Skip to content
Human Health

Engineering Life: How Synthetic Biology Enables Us to Create New Living Things

In 2016 scientists at the J. Craig Venter Institute created the world's first minimally viable synthetic bacterial cell. Dubbed Syn 3.0, it has just 473 genes. | Image credit: J. Craig Venter Institute

The term synthetic biology refers to using natural materials to construct artificial molecules, cells, and whole organisms, or to redesign existing ones to do things that natural biology can’t do by tinkering with their genetic makeup.

Wacław Szybalski coined the term “synthetic biology” in 1974 when the idea of making DNA in a lab was first explored.

Today, synthetic biology is an interdisciplinary field that applies engineering principles to living systems. More specifically, the term describes the use of natural materials to design and build novel molecules, cells, tissues, organs, or indeed whole organisms, with properties not seen in nature.

Much of the excitement surrounding this field over the past few decades stems from the premise that synthetic biologists may be able to create living machines with the potential to solve some of the world’s most pressing problems. In the early days of the 1970s and 1980s, environmental pollution and similar concerns were a particular focus (in fact, the first patent for a genetically-engineered organism was granted in 1981 for a bacterium designed to consume oil). Since then, the true breadth of potential application, including in medicine, energy and agriculture, has become increasingly apparent.

“The two key components of synthetic biology—reading and writing DNA—represent the limit of Moore’s law.”
David Berry, Partner, Flagship Pioneering

According to Flagship Pioneering general partner David Berry, synthetic biology has been moving at an especially rapid pace over the past 10 years because of two advances. He says, “The two key components of synthetic biology—reading and writing DNA—represent the limit of Moore’s law."

In this context, reading DNA refers to the act of decoding the DNA sequence, or genome, of an organism. (For reference, a human genome contains approximately three billion pairs of DNA bases, denoted by the letters A, C, T, and G.) Cheaper, faster sequencing is allowing synthetic biologists to read an ever-growing number of genomes, which in turn sheds light on how different organisms are constructed at the level of their molecular and cellular machinery. With these insights, a synthetic biologist can begin to speculate about how individual components of that machinery could be repurposed, improved, or adapted for novel uses.

Writing DNA is the second critical area of technological innovation. More often referred to as “DNA synthesis,” it involves making strands of DNA of specific lengths with a specific sequence in a lab.

One striking illustration of the progress in bringing together DNA reading and writing is the generation of man-made life forms. In 2008, biotechnology entrepreneur Craig Venter announced that his team had created the first synthetic bacterial genome. A far more complex structure — an artificial yeast chromosome — was synthesized just six years later. In 2017, researchers reported that they had replaced 5 out of the 16 chromosomes in yeast with artificial copies. Synthetic human chromosomes have yet to be created, but the prospect is a tantalizing one: while gene therapies currently in development are designed to fix a single, faulty gene in specific cells or tissues, an artificial human chromosome might enable the replacement of larger sections of DNA in a way that could deliver significant therapeutic benefits.

A project announced in 2016, called Genome Project-Write, is even more ambitious. Its aim is to synthesize the genomes of plants, animals, and possibly even humans in whole or in part. The group expects its activities to generate powerful new insights into health and disease, and enable high-value innovations. The group’s first initiative, for example, involves engineering human cells so that they can resist viral infections. These so-called ultra-safe cells could be used without fear of contamination by biotech and pharma companies, which currently use purified human cells in some drugs.

Other applications more explicitly marry engineering and biology. Biosensors, for example, are organisms under development as living devices that record activity within cells or detect the presence of certain chemicals. Potential uses include monitoring in humans for medical conditions, detecting pathogens in food, checking air quality, and monitoring chemical levels in soil or water.

Importantly, constructing microbes, chromosomes, and whole genomes relies on DNA manufacturing, which used to be a painstaking process done by hand. Now, companies are using computers and robots to design and print out strands of DNA. Lab-made DNA continues to become cheaper and faster to make, which in turn is enabling increasingly ambitious experiments. Ultimately, if the process of making biological materials such as DNA can be standardized and automated in something resembling a car assembly line, some of today’s most advanced medical treatments, including gene and CAR-T therapies, could become more affordable and far easier to deliver to patients.

“The ability to create constructs that allow you to do what you want has been increasing at rates that could not have been anticipated. That has brought forth a kind of sky’s-the-limit mentality that has gotten a lot of people interested in the field,” says Berry. The real limit of synthetic biology technologies over the next decade may be our collective imagination.

Synthetic Biology Timeline


The first recombinant DNA molecules are produced by combining DNA from more than one organism.


Geneticist Waclaw Szybalski coins the term “synthetic biology.”


Frederick Sanger and colleagues develop a technique for determining the precise order of nucleotides within DNA. Sanger sequencing would continue to be used over the subsequent decades.


The first patent for a genetically modified organism – a bacterium designed to break down crude oil – is awarded.


Automation improves the speed at which DNA can be sequenced.


The National Institutes of Health launches the Human Genome Project to sequence the first human genome.

April 2003

The Human Genome Project is completed.

November 2003

The first synthetic virus is created in just two weeks.


New sequencing methods that are cheaper, faster and more efficient than Sanger sequencing — so-called “next-generation” sequencing — begin to emerge.


The first synthetic bacterial genome is created by researchers at the J. Craig Venter Institute.


The first artificial self-replicating cell, known as Synthia, is created by scientists at the J. Craig Venter Institute.


The first fully functional synthetic yeast chromosome is created by Jef Boeke and his team. The Synthetic Yeast 2.0 project is founded to synthesize the entire yeast genome.


Genome Project-Write launches (initially under the name “Human Genome-Project Write”).


Five out of 16 yeast chromosomes are replaced with artificial ones, completing more than one-third of the yeast genome.

February 2018

The fastest genetic diagnosis using genome sequencing is delivered in just 19.5 hours by scientists at the Rady Children’s Institute for Genome Medicine.

If you see an error in this story, contact us.

More from: Human Health